This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Syntheses and Crystal Structures of Two Thiolato-Organophosphino

 Cobalt(II) Complexes, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ and $[\mathrm{Co}(\mathrm{S}-\mathrm{m}-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ Liu^{a}
${ }^{\text {a }}$ Fuzhou Laboratory of Structure Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China

To cite this Article Jiang, Feilong, Wei, Guowei , Huang, Zhiying, Lei, Xinjian, Hong, Maochun, Kang, Beisheng and Liu, Hanqin(1992) 'Syntheses and Crystal Structures of Two Thiolato-Organophosphino Cobalt(II) Complexes, $(\mathrm{Et} N \mathrm{~N})\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Co}\left(\mathrm{S}-\mathrm{m}^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh} 2\right)\right]$, Journal of Coordination Chemistry, 25: ${ }^{4}$, $183-191^{5}$
To link to this Article: DOI: 10.1080/00958979209409190
URL: http://dx.doi.org/10.1080/00958979209409190

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


SYNTHESES AND CRYSTAL STRUCTURES OF TWO THIOLATO-ORGANOPHOSPHINO COBALT(II) COMPLEXES, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ AND $\left[\mathrm{Co}\left(\mathrm{S}-m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathbf{P}(\mathbf{P h}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$

FEILONG JIANG,* GUOWEI WEI, ZHIYING HUANG, XINJIAN LEI, MAOCHUN HONG, BEISHENG KANG and HANQIN LIU
Fuzhou Laboratory of Structure Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

(Received April 24, 1991; in final form July 5, 1991)
$\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ (1) and the neutral complex $\left[\mathrm{Co}\left(\mathrm{S}-\mathrm{m}_{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph})-\right.\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$)] (2) have been prepared by reaction of $\mathrm{CoCl}_{2}, \mathrm{NaSR}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$) and an organophosphine PPh_{3}, dppep) in methanol. Red crystals of compound 1 are triclinic, space group $P \overline{1}$ with cell dimensions $a=11.284(5), b=11.987(5), c=15.929(5) \AA, \alpha=91.33(3), \beta=96.51(2)$, $\gamma=105.42(4)^{\circ}, Z=2, D c=1.255 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.063$ for 1905 observed reflections. The CoPS ${ }_{3}$ core possesses a distorted trigonal pyramidal geometry. Average distances ($\mathrm{Co}-\mathrm{S}$) are $2.262 \AA$ and ($\mathrm{Co}-\mathrm{P}$) $2.366(2) \AA$. Black crystals of compound 2 are monoclinic, space group $P 2_{1} / c$ with cell dimensions $a=$ $11.024(3), b=28.061(2), c=14.895(2) \AA, \beta=104.59(1)^{\circ}, Z=4, D c=1.263 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.071$ for 2021 reflections. The $\mathrm{CoP}_{3} \mathrm{~S}_{2}$ core of 2 forms a trigonal bipyramid with average (Co-S) distances of $2.247 \AA$ and (Co-P) of $2.241 \AA$.

Keywords: Cobalt, phosphine, thiolate, complexes, crystal structure

INTRODUCTION

Transition metal thiolato-complexes have been widely investigated because of their chemical properties and their potential for serving as biological models. ${ }^{1-2}$ Organophosphines have played an important role in the development of the stereochemistry of transition metal complexes. A number of studies on complexes of transition metals containing both thiolate and organophosphine ligands have been reported. ${ }^{3-4}$ In order to examine the nature of their coordination with transition metals, we have initiated a systematic investigation of this type of complex. ${ }^{5-6}$ Herein we report the syntheses and structural characterization of two thiolato-organophosphino cobalt(II) complexes, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ (1) and $\left[\mathrm{Co}\left(\mathrm{S}-m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}-\right.$ dppep] (2), (dppep $=$ bis (2-diphenylphosphinoethyl)phenylphosphine).

EXPERIMENTAL

All operations were carried out under a purified dinitrogen atmosphere using conventional Schlenk techniques. Solvents were dried over molecular sieves and

[^0]degassed with dry nitrogen before use. Cobalt chloride, dppep, triphenylphosphine, thiophenol, and thiocresol were commercially available (Aldrich Chemical Co.). IR spectra were recorded on a Perkin-Elmer 577 spectrophotometer in KBr pellets, and ${ }^{1}$ H NMR spectra on a Varian FT-80A spectrometer at room temperature with DMSO- d_{6} as solvent and TMS as internal standard.

Preparation of $\left(E t_{4} \mathrm{~N}\right)\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]$ (1)
A solution of $\mathrm{NaSC}_{6} \mathrm{H}_{5}(0.8 \mathrm{~g}, 6 \mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred mixture of $\mathrm{CoCl}_{2}(0.26 \mathrm{~g}, 2 \mathrm{mmol}) \mathrm{PPh}_{3}(0.26 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NBr}(0.4 \mathrm{~g}, 2 \mathrm{mmol})$ in methanol ($50 \mathrm{~cm}^{3}$). The reaction solution was stirred for 12 hours at room temperature and filtered. The volume of filtrate was reduced under vacuum. Deep red crystals of 1 were obtained at $4^{\circ} \mathrm{C}$ after several days. Recrystallization can be effected from a mixture of toluene/hexane to yield crystals suitable for X-ray crystallographic analysis, with a yield of 72%.

Preparation of [$\mathrm{Co}\left(\mathrm{S}-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}$ dppep] (2)

To a stirred solution of $\mathrm{CoCl}_{2}(0.26 \mathrm{~g}, 2 \mathrm{mmol})$ in methanol ($50 \mathrm{~cm}^{3}$), dppep (1.06 g , $2 \mathrm{mmol})$ was added, followed by $\mathrm{Na}\left(\mathrm{S}-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)(0.58 \mathrm{~g}, 4 \mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction was completed overnight with stirring and the resulting mixture was concentrated and filtered. Black crystals suitable for X-ray analysis were obtained after allowing the filtrate to stand at $4^{\circ} \mathrm{C}$ for several days. The total yield of compound 2 was 61%.

TABLE I
Summary of crystal data and data collection parameters.

Compound	1	2
Formula	$\mathrm{C}_{44} \mathrm{CoH}_{50} \mathrm{NPS}_{3}$	$\mathrm{C}_{48} \mathrm{CoH}_{47} \mathrm{P}_{3} \mathrm{~S}_{2}$
F.W.	778.99	839.86
Space group	PI	P2 $1 / \mathrm{c}$
a, \AA	11.284(5)	11.024(3)
b, \AA	11.987(5)	28.061(2)
c, \AA	15.929(5)	14.895(2)
u, deg	91.33(3)	
β, deg	96.51(2)	104.59(1)
$\gamma, \operatorname{deg}$	105.42(4)	
V, \AA^{3}	2060.56	4459.04
Z	2	4
$D_{\mathrm{c}}, \mathrm{g} \mathrm{cm}^{-3}$	1.255	1.263
Radiation	MoKa	MoKa
μ, cm^{-1}	6.285	6.030
$F(000)$	822	1756
Crystal dimensions, mm	$0.50 \times 0.40 \times 0.40$	$0.20 \times 0.20 \times 0.40$
Scan width, deg	$0.60+0.350 \tan 0$	$1.00+0.350 \tan 0$
20 range, deg	2-44.0	2-50.0
No. of reflections refined	1905	202I
Largest shift/esd	0.20	0.88
R	0.063	0.071
R_{w}	0.072	0.096

TABLE II
Atomic coordinates and thermal parameters for 1.

Atom	x / a	y / b	2/c	$B\left(\AA^{2}\right)$
Co	0.0821(2)	0.2913(2)	0.2449(1)	3.67(5)
S1	0.0545(3)	$0.1534(3)$	0.1399(2)	4.4(1)
S2	0.1640(3)	0.4768(3)	0.2124(3)	4.7(1)
S3	0.1056(3)	$0.2401(3)$	0.3802(2)	4.5(1)
P	-0.1249(3)	$0.3015(3)$	0.2414(2)	$3.5(1)$
Cll	$0.188(1)$	$0.163(1)$	0.0928(8)	4.8(3)
Cl 2	0.301(1)	0.261(1)	0.1083(9)	5.1(4)
C13	0.397(1)	0.259(1)	0.063(1)	$6.1(5)$
C14	0.392(1)	$0.176(1)$	0.0024(9)	6.4(5)
C15	0.284(2)	0.086(2)	0.012(1)	7.1 (5)
C16	$0.187(1)$	0.085(1)	0.0334(9)	5.6(4)
C21	0.324(1)	0.526(1)	0.2501(9)	4.7(4)
C22	0.371 (1)	0.500(1)	0.328(1)	$5.9(5)$
C23	0.493(2)	0.543(2)	0.359(1)	8.7(6)
C24	0.574(1)	0.613(2)	0.314(1)	8.4(6)
C25	0.532(1)	$0.636(1)$	0.235(1)	6.5(5)
C26	0.408(1)	0.596(1)	0.2016(9)	5.7(5)
C31	0.243(1)	0.200(1)	0.3971 (8)	3.5(3)
C32	$0.315(1)$	$0.188(1)$	0.3355(8)	4.3(4)
C33	0.422(1)	$0.151(1)$	0.354(1)	$5.5(4)$
C34	0.457(1)	0.127(1)	0.434(1)	6.2(5)
C35	0.387(1)	0.142(2)	0.4966(9)	7.0(5)
C36	0.283(1)	$0.179(1)$	0.479(1)	6.2(5)
C41	-0.242(1)	$0.165(1)$	0.2299(8)	3.7(3)*
C42	-0.351(1)	$0.147(1)$	0.1745(9)	4.9(4)*
C43	-0.442(1)	0.037(1)	0.1695(9)	5.2(4)*
C44	-0.424(1)	-0.048(1)	0.219(1)	5.9(4)*
C45	-0.316(1)	-0.032(1)	0.274(1)	6.0(4)*
C46	-0.226(1)	0.075(1)	0.2781(9)	5.0(4)*
C51	-0.175(1)	$0.385(1)$	0.1570 (8)	3.6(3)*
C52	-0.257(1)	0.449(1)	0.1640(9)	4.7(3)*
C53	-0.291(1)	0.510(1)	0.0962(9)	$5.3(4)^{*}$
CS4	-0.241(1)	0.506(1)	0.024(1)	6.1(4)*
C55	-0.156(1)	0.447(1)	0.016(1)	5.6(4)*
C56	-0.122(1)	0.383(1)	0.0815(9)	4.9(4)*
C6I	-0.156(1)	0.371(1)	0.3328(8)	3.6(3)*
C62	-0.076(1)	0.476(1)	0.3643(9)	4.4(3)*
C63	-0.101(1)	0.537(1)	0.432(1)	5.5(4)*
C64	-0.203(1)	0.497(1)	0.470(1)	5.8(4)*
C65	-0.281(1)	0.393(1)	0.443(1)	6.1(4)*
C66	-0.261(1)	0.330(1)	0.3728(9)	5.5(4)*
N	0.102(1)	0.830(1)	0.2651 (7)	4.6(3)*
C711	0.176(1)	0.889(1)	0.200(1)	5.9(4)*
C712	0.205(2)	0.808(2)	0.136(1)	8.7(5)*
C721	0.077(2)	$0.921(1)$	0.321(1)	7.1(5)*
C722	-0.003(2)	0.885(2)	0.388(1)	$9.2(6)^{*}$
C731	-0.021(1)	0.749(1)	0.225(1)	6.5(4)*
C732	-0.097(2)	0.810(2)	0.167(1)	10.4(6)*
C741	0.165(2)	0.754(2)	0.319(1)	7.5(5)*
C742	0.291(2)	0.814(2)	0.364(1)	9.0(5)*

Starred atoms were refined isotropically.
Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3) \times\left[a^{2} \times \beta(1,1)+b^{2} \times \beta(2,2)+c^{2} \times \beta(3,3)+a b(\cos \gamma) \times \beta(1,2)+a c(\cos \beta)\right.$ $\times \beta(1,3)+b c(\cos \alpha) \times \beta(2,3)]$.

Intensity data collection and structure analysis

Single crystals were coated with epoxy resin and mounted on glass fibres. Diffraction data for 1 and 2 were collected at room temperature on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\mathrm{a}}$ radiation ($\lambda=0.71073 \AA$). After data reduction (including correction for fluctuation of monitored reflections, LP factors and empirical absorption), the remaining unique reflections with $I>3 \sigma(I)$ were used for subsequent structure solution and refinement. Calculations were performed on a VAX 11/785 computer with the SDP program package. Crystal data and data collection parameters are summarized in Table I. The structures were solved by direct and Fourier methods. All non-hydrogen atoms were refined by fullmatrix least-squares techniques.

FIGURE 1 Molecular structure and numbering scheme for the $\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{PPh}_{3}\right)\right]^{-}$anion.

RESULTS AND DISCUSSION

Positional and thermal parameters for all non-hydrogen atoms in 1 and 2 are summarized in Tables II and III, respectively. Selected distances and bond angles are listed in Tables IV and V, respectively. Perspective views of the molecular structures of 1 and 2 are shown in Figures 1 and 2, respectively. The cobalt atom in 1 is coordinated by one phosphorus atom of the triphenylphosphine and three sulfur atoms of the thiolate ligands. The $\mathrm{CoS}_{3} \mathrm{P}$ core is much different from the CoS_{4} core in $\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right]^{2-}(3)$ which has a distorted tetrahedral structure. ${ }^{7}$ The $\mathrm{CoS}_{3} \mathrm{P}$ core possesses pseudo- $C_{3 v}$ symmetry as may be seen in Figure 1, and can be considered in terms of trigonal pyramidal geometry with three sulfur atoms in the basal plane and
one phosphorus atom occupying the apical position. The Co atom lies above the trigonal plane with three nearly equivalent $\mathrm{Co}-\mathrm{S}$ bonds ($2.260-2.266 \AA$). As the triphenylphosphine ligand replaces one of the thiophenolate ligands in 3, the remaining thiophenolate ligands are compressed along the pseudo-3-fold axis. All phenyl groups of the three thiolate ligands are in same orientation owing to steric crowding of the triphenylphosphine ligand. This compression is indicated by the fact that the $\mathrm{S}-\mathrm{Co}-\mathrm{S}$ angles range from $116.5(1)^{\circ}$ to $120.1(2)^{\circ}$, much larger than the tetrahedral value of 109.28°, while the average $\mathrm{S}-\mathrm{Co}-\mathrm{P}$ angles range from 96.81(9)$98.98(9)^{\circ}$. The influence of stereochemistry due to ligand substitution of one of the four thiolates was also found in $\left[\mathrm{Co}\left(\mathrm{SC}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{-}$, in which, unlike compound 1 , the rings of the three thiolate ligands have different orientation. ${ }^{8}$ The average $\mathrm{Co}-\mathrm{S}$ distance in $1(2.262 \AA)$ appears to be significantly shorter than in $\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right]^{2-}(2.328 \AA)$, and a little shorter than in $\left[\mathrm{Co}\left(\mathrm{SC}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{-}$ (2.28(1) \AA). The Co-P bond length is $2.366(2) \AA$, longer than the corresponding distances ($2.180-2.242 \AA$) found in other $\mathrm{Co}-\mathrm{PPh}_{3}-\mathrm{S}$ compounds. ${ }^{9}$

TABLE III
Atomic coordinates and thermal parameters for 2.

Atom	x / a		$/ b$	z / c
Co	$0.1258(3)$	$0.1728(1)$	$0.6864(2)$	$3\left(\AA^{2}\right)$
S1	$0.1763(7)$	$0.0960(2)$	$0.7047(4)$	$4.21(6)$
S2	$0.1181(6)$	$0.1907(2)$	$0.8334(4)$	$4.9(2)$
P1	$0.2915(6)$	$0.2227(2)$	$0.6984(4)$	$3.7(1)$
P2	$0.1345(5)$	$0.1619(2)$	$0.5408(4)$	$3.4(1)$
P3	$-0.0452(6)$	$0.2150(2)$	$0.6215(4)$	$3.5(1)$
C1	$0.329(2)$	$0.2262(9)$	$0.584(1)$	$4.6(6)$
C2	$0.293(2)$	$0.1794(8)$	$0.531(1)$	$4.2(6)$
C3	$0.031(2)$	$0.2029(8)$	$0.461(1)$	$3.9(6)$
C4	$-0.019(2)$	$0.2423(8)$	$0.515(2)$	$4.3(6)$
C11	$0.236(2)$	$0.0702(8)$	$0.815(1)$	$4.4(6)$
C12	$0.198(3)$	$0.024(1)$	$0.825(2)$	$7.5(8)$
C13	$0.250(3)$	$0.002(1)$	$0.905(2)$	$8(1)$
C14	$0.338(3)$	$0.021(1)$	$0.978(2)$	$7.5(9)$
C15	$0.378(3)$	$0.0653(9)$	$0.965(2)$	$6.4(8)$
C16	$0.331(2)$	$0.0901(9)$	$0.882(2)$	$5.3(7)$
C17	$0.481(4)$	$0.090(1)$	$1.043(3)$	$14(2)$
C21	$0.061(2)$	$0.1445(8)$	$0.891(2)$	$4.3(6)$
C22	$0.111(3)$	$0.138(1)$	$0.987(1)$	$6.8(8)$
C23	$0.069(3)$	$0.103(1)$	$1.033(2)$	$8.3(9)$
C24	$-0.026(3)$	$0.074(1)$	$0.978(2)$	$9.6(9)$
C25	$-0.072(3)$	$0.081(1)$	$0.881(2)$	$8.9(9)$
C26	$-0.030(2)$	$0.1164(9)$	$0.843(2)$	$6.1(7)$
C27	$-0.181(3)$	$0.037(2)$	$0.829(2)$	$13(1)$
C31	$0.295(2)$	$0.2846(8)$	$0.730(1)$	$3.8(6)$
C32	$0.191(2)$	$0.3053(8)$	$0.755(1)$	$4.6(6)$
C33	$0.190(2)$	$0.352(1)$	$0.777(2)$	$5.8(7)$
C34	$0.295(3)$	$0.3814(9)$	$0.777(2)$	$5.6(7)$
C35	$0.398(2)$	$0.362(1)$	$0.749(2)$	$6.4(8)$
C36	$0.397(2)$	$0.3148(8)$	$0.726(2)$	$5.7(7)$
C41	$0.440(2)$	$0.2008(8)$	$0.777(1)$	$4.2(6)$
C42	$0.458(2)$	$0.2100(9)$	$0.867(2)$	$5.5(7)$

TABLE III (continued)

Atom	x / a	y / b	z / c	$B\left(\AA^{2}\right)$
C43	$0.555(2)$	$0.194(1)$	$0.929(2)$	$6.1(7)$
C44	$0.646(2)$	$0.168(1)$	$0.898(2)$	$7.4(8)$
C45	$0.620(3)$	$0.157(1)$	$0.807(2)$	$8.0(9)$
C46	$0.524(2)$	$0.175(1)$	$0.745(2)$	$5.9(7)$
C51	$0.104(2)$	$0.1058(8)$	$0.480(1)$	$3.7(6)$
C52	$-0.015(2)$	$0.089(1)$	$0.442(2)$	$5.8(7)$
C53	$-0.021(3)$	$0.040(1)$	$0.397(2)$	$9.0(9)$
C54	$0.073(3)$	$0.015(1)$	$0.395(2)$	$9(1)$
C55	$0.185(3)$	$0.029(1)$	$0.434(2)$	$7.7(9)$
C56	$0.204(2)$	$0.073(1)$	$0.478(2)$	$5.9(7)$
C61	$-0.118(2)$	$0.2624(8)$	$0.673(1)$	$4.2(6)$
C62	$-0.116(2)$	$0.3095(8)$	$0.646(2)$	$5.8(7)$
C63	$-0.177(3)$	$0.3432(9)$	$0.682(2)$	$6.9(8)$
C64	$-0.241(2)$	$0.333(1)$	$0.745(2)$	$7.6(8)$
C65	$-0.243(3)$	$0.285(1)$	$0.774(2)$	$6.7(8)$
C66	$-0.180(2)$	$0.2491(9)$	$0.737(2)$	$5.4(7)$
C71	$-0.183(2)$	$0.1779(7)$	$0.577(1)$	$3.1(5)$
C72	$-0.293(2)$	$0.1978(8)$	$0.522(1)$	$4.9(6)$
C73	$-0.400(2)$	$0.171(1)$	$0.486(2)$	$6.6(8)$
C74	$-0.397(2)$	$0.124(1)$	$0.499(2)$	$6.8(8)$
C75	$-0.292(2)$	$0.1013(9)$	$0.554(2)$	$6.4(8)$
C76	$-0.183(2)$	$0.1305(9)$	$0.590(2)$	$5.2(6)$

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3) \times\left[a^{2} \times \beta(1,1)+b^{2} \times \beta(2,2)+c^{2} \times \beta(3,3)+a b(\cos \gamma) \times \beta(1,2)+a c(\cos \beta) \times \beta(1,3)\right.$ $+b c(\cos \alpha) \times \beta(2,3)]$.

FIGURE 2 A perspective view of $\left[\mathrm{Co}\left(\mathrm{S}-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right.$ dppep].

TABLE IV
Selected bond distances (\AA) and angles (deg) for 1 .

Atoms	Distance	Atoms	Distance
Co-S1	$2.260(3)$	S2-C21	$1.776(9)$
Co-S2	$2.266(3)$	S3-C31	$1.743(9)$
Co-S3	$2.260(2)$	P-C41	$1.800(8)$
Co-P	$2.366(2)$	P-C51	$1.821(8)$
S1-C11	$1.74(1)$	P-C61	$1.770(8)$
Atoms	Angle	Atoms	Angle
S1-Co-S2	$116.5(1)$	Co-SI-C11	$112.5(4)$
S1-Co-S3	$118.3(2)$	Co-S2-C21	$111.7(4)$
S1-Co-P	$98.98(9)$	Co-S3-C31	$108.0(4)$
S2-Co-S3	$120.1(2)$	Co-P-C41	$116.1(3)$
S2-Co-P	$96.81(9)$	Co-P-C51	$114.6(3)$
S3-Co-P	$96.88(9)$	Co-P-C61	$114.4(3)$

TABLE V
Selected bond distances (\AA) and angles (deg) for 2.

Atoms	Distance	Atoms	Distance
Co-S1	$2.225(7)$	P1-C31	$1.80(2)$
Co-S2	$2.269(7)$	P1-C41	$1.86(3)$
Co-P1	$2.273(7)$	P2-C2	$1.85(2)$
Co-P2	$2.216(7)$	P2-C3	$1.83(3)$
Co-P3	$2.232(6)$	P2-C51	$1.81(2)$
S1-C11	$1.77(2)$	P3-C4	$1.85(2)$
S2-C21	$1.76(2)$	P3-C61	$1.82(2)$
P1-Cl	$1.86(2)$	P3-C71	$1.82(2)$
Atoms	Angle	Atoms	Angle
S1-Co-S2	$99.5(3)$	Co-S1-C11	$122.2(8)$
S1-Co-P1	$114.6(3)$	Co-S2-C21	$114.4(8)$
S1-Co-P2	$85.2(3)$	Co-P1-C1	$109.0(7)$
S1-Co-P3	$136.6(3)$	Co-P1-C31	$125.5(8)$
S2-Co-P1	$90.8(3)$	Co-P1-C41	$114.1(8)$
S2-Co-P2	$175.1(3)$	Co-P2-C2	$108.3(8)$
S2-Co-P3	$93.9(3)$	Co-P2-C3	$111.8(8)$
P1-Co-P2	$86.0(2)$	Co-P2-C51	$124.4(8)$
P1-Co-P3	$106.3(2)$	Co-P3-C4	$107.1(7)$
P2-Co-P3	$83.6(2)$	Co-P3-C61	$128.3(7)$
		Co-P3-C71	$113.1(7)$

The cobalt atom in the neutral complex $\left[\mathrm{Co}\left(\mathrm{S}-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right.$ dppep] is fivecoordinated by two sulfur atoms from S-m-tolyl ligands and three phosphorus atoms from the dppep ligand. The structure is adequately represented by a distorted trigonal bipyramid with a $\mathrm{CoP}_{3} \mathrm{~S}_{2}$ core. One sulfur (Sl) and two phosphorus atoms
(P1, P3) are at the three corners of a triangular array, of which the cobalt atom lies in the centre; the remaining sulfur (S2) and phosphorus (P2) atoms are at the apical positions. The tridentate dppep ligand is chelatd to the cobalt atom with a mean $\mathrm{Co}-\mathrm{P}$ distance of $2.241 \AA$, slightly shorter than that of $2.27(2) \AA$ found in $\left[\mathrm{Co}(\mathrm{dppe})_{2} \mathrm{Cl}\right]^{+}$ for five-coordinated cobalt(II). ${ }^{10}$ The average Co-S distance ($2.241 \AA$) in 2, is similar to that in $1(2.262 \AA)$ and is shorter than is found in $\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right]^{2-}(2.32 \AA)$. The observed variation in $\mathrm{Co}-\mathrm{S}$ distances in both compounds is due to the organophosphine ligand affecting the sulfur atoms through the cobalt atom. The $\mathrm{P}-\mathrm{C}$ and C-C distances appear normal for dppep complexes with average values of $1.83 \AA$ and $1.39 \AA$, respectively.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (DMSO- d_{6}) showed a multiplet signal due to PPh_{3} at 7.37 ppm , similar to that of the free ligand. The proton NMR spectrum also shows one broad peak at low field (17.1 ppm), is assigned to $\mathrm{SC}_{6} \mathrm{H}_{5}$, as compared with two broad peaks at 16.6 ppm and -22.7 ppm for the corresponding ligand in $\left(\mathrm{Et}_{4} \mathrm{~N}_{2}\right)_{2}{ }^{-}$ $\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right],{ }^{11}$ thus confirming the paramagnetic character of 1 . Sharp triplets and quartets (3.31 and 1.22 ppm) due to $\mathrm{Et}_{4} \mathrm{~N}^{+}$in 1 are also observed. Infrared spectra (KBr pellet) of 1 exhibited characteristic bands for the $\mathrm{SC}_{6} \mathrm{H}_{5}$ group at 3000, 1575, 750 and $695 \mathrm{~cm}^{-1}$, as well as bands for PPh_{3} at $3050,1435,1100,720$ and $520 \mathrm{~cm}^{-1}$. Two bands at 475 and $360 \mathrm{~cm}^{-1}$ were present in the Co-S stretching region.

ACKNOWLEDGEMENTS

This work was partially supported by a grant from the National Natural Science Foundation of China. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded by Mr. Daxu Wu at this Institute.

SUPPLEMENTARY MATERIAL

Complete lists of bond distances, bond angles, thermal parameters, and observed and calculated structure factors for $\mathbf{1}$ and $\mathbf{2}$ have been deposited with the editor and are available upon request.

REFERENCES

1. H.Q. Liu, Q.T. Liu, B.S. Kang, L.J. He, C.N. Chen, K. Zhao, M.C. Hong, L.R. Huang, J. Zhuang and J.X. Lu, Scientia Sinica, Series B, 31, 10 (1988); B.S. Kang, L.H. Weng, D.X. Wu, F. Wang, Z. Guo, L.R. Huang, Z.Y. Huang and H.Q. Liu, Inorg. Chem., 27, 1128 (1988).
2. P.J. Blower and J.R. Dilworth, Coord. Chem. Rev., 76, 121 (1987); I.G. Dance, Polyhedron, 5, 1037 (1986); T.E. Wolff, J.M. Berg, P.P. Power, K.O. Hodgson and R.H. Holm, Inorg. Chem., 19, 430 (1980).
3. J.A.M. Canich, F.A. Cotton, K.R. Dunbar and L.R. Falvello, Inorg. Chem., 27, 804 (1988); D.C. Povey, R.L. Richards and C. Shortman, Polyhedron, 5, 369 (1986).
4. K.J. Cavell, D.G. Hay, A.F. Masters and G.A. Williams, Aust. J. Chem., 38, 369 (1985).
5. F.L. Jiang, G.W. Wei, X.J. Lei, Z.Y. Huang, M.C. Hong and H.Q. Liu, J. Chem. Research (S) 238, 1991; G.W. Wei, H.Q. Liu, Z.Y. Huang, L.R. Huang and B.S. Kang, J. Chem. Soc., Chem. Commun., 1839 (1989).
6. B. Kang and H.Q. Liu, submitted for publication; G.W. Wei, H.Q. Liu, Z.Y. Huang, M.C. Hong, L.R. Huang and B.S. Kang, Polyhedron, 10, 553 (1991).
7. D. Swenson, N.C. Baenziger, D. Coucouvanis, J. Am. Chem. Soc., 100, 1932 (1978); K.S. Hagen and R.H. Holm, Inorg. Chem., 23, 418 (1984).
8. S.A. Koch, R. Fikar, M. Millar and T. O'Sullivan, Inorg. Chem., 23, 121 (1984).
9. D. Fenske, J. Hachgenei and J. Ohmer, Angew. Chem. Int. Ed. Engl., 24, 706 (1985).
10. J.K. Stalick, P.W.R. Corfield and D.W. Meek, Inorg. Chem., 12, 1668 (1973).
11. $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Co}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\right]$ was prepared in our lab; crystal data: $a=12.018, b=14.845, c=22.566 \AA$, $\beta=93.191^{\circ}, V=4020.16 ;{ }^{1} \mathrm{H}$ NMR chemical shifts (DMSO- d_{6}): $16.62\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{5}\right),-22.79(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{5}\right), 3.58(\mathrm{~s}, 16 \mathrm{H}, \mathrm{Et}), 1.43$ (s, 24H, Et).

[^0]: * Author for correspondence.

